今天看到了一个博文,感觉真的很不错,所以这里转载了一下,原文在这里。
Heap内存模型
一般来说,malloc所申请的内存主要从Heap区域分配(本文不考虑通过mmap申请大块内存的情况)。
由上文知道,进程所面对的虚拟内存地址空间,只有按页映射到物理内存地址,才能真正使用。受物理存储容量限制,整个堆虚拟内存空间不可能全部映射到实际的物理内存。Linux对堆的管理示意如下:
Linux维护一个break指针,这个指针指向堆空间的某个地址。从堆起始地址到break之间的地址空间为映射好的,可以供进程访问;而从break往上,是未映射的地址空间,如果访问这段空间则程序会报错。
brk与sbrk
由上文知道,要增加一个进程实际的可用堆大小,就需要将break指针向高地址移动。Linux通过brk和sbrk系统调用操作break指针。两个系统调用的原型如下:1
2int brk(void *addr);
void *sbrk(intptr_t increment);
brk将break指针直接设置为某个地址,而sbrk将break从当前位置移动increment所指定的增量。brk在执行成功时返回0,否则返回-1并设置errno为ENOMEM;sbrk成功时返回break移动之前所指向的地址,否则返回(void *)-1。
一个小技巧是,如果将increment设置为0,则可以获得当前break的地址。
另外需要注意的是,由于Linux是按页进行内存映射的,所以如果break被设置为没有按页大小对齐,则系统实际上会在最后映射一个完整的页,从而实际已映射的内存空间比break指向的地方要大一些。但是使用break之后的地址是很危险的(尽管也许break之后确实有一小块可用内存地址)。
资源限制与rlimit
系统对每一个进程所分配的资源不是无限的,包括可映射的内存空间,因此每个进程有一个rlimit表示当前进程可用的资源上限。这个限制可以通过getrlimit系统调用得到,下面代码获取当前进程虚拟内存空间的rlimit:1
2
3
4
5int main() {
struct rlimit *limit = (struct rlimit *)malloc(sizeof(struct rlimit));
getrlimit(RLIMIT_AS, limit);
printf("soft limit: %ld, hard limit: %ld\n", limit->rlim_cur, limit->rlim_max);
}
其中rlimit是一个结构体:1
2
3
4struct rlimit {
rlim_t rlim_cur; /* Soft limit */
rlim_t rlim_max; /* Hard limit (ceiling for rlim_cur) */
};
每种资源有软限制和硬限制,并且可以通过setrlimit对rlimit进行有条件设置。其中硬限制作为软限制的上限,非特权进程只能设置软限制,且不能超过硬限制。
实现malloc
#### 玩具实现
在正式开始讨论malloc的实现前,我们可以利用上述知识实现一个简单但几乎没法用于真实的玩具malloc,权当对上面知识的复习:
1 | /* 一个玩具malloc */ |
这个malloc每次都在当前break的基础上增加size所指定的字节数,并将之前break的地址返回。这个malloc由于对所分配的内存缺乏记录,不便于内存释放,所以无法用于真实场景。
正式实现
下面严肃点讨论malloc的实现方案。
数据结构
首先我们要确定所采用的数据结构。一个简单可行方案是将堆内存空间以块(Block)的形式组织起来,每个块由meta区和数据区组成,meta区记录数据块的元信息(数据区大小、空闲标志位、指针等等),数据区是真实分配的内存区域,并且数据区的第一个字节地址即为malloc返回的地址。
可以用如下结构体定义一个block:1
2
3
4
5
6
7
8typedef struct s_block *t_block;
struct s_block {
size_t size; /* 数据区大小 */
t_block next; /* 指向下个块的指针 */
int free; /* 是否是空闲块 */
int padding; /* 填充4字节,保证meta块长度为8的倍数 */
char data[1] /* 这是一个虚拟字段,表示数据块的第一个字节,长度不应计入meta */
};
由于我们只考虑64位机器,为了方便,我们在结构体最后填充一个int,使得结构体本身的长度为8的倍数,以便内存对齐。示意图如下:
寻找合适的block
现在考虑如何在block链中查找合适的block。一般来说有两种查找算法:
First fit:从头开始,使用第一个数据区大小大于要求size的块所谓此次分配的块
Best fit:从头开始,遍历所有块,使用数据区大小大于size且差值最小的块作为此次分配的块
两种方法各有千秋,best fit具有较高的内存使用率(payload较高),而first fit具有更好的运行效率。这里我们采用first fit算法。
1 | /* First fit */ |
find_block从frist_block开始,查找第一个符合要求的block并返回block起始地址,如果找不到这返回NULL。这里在遍历时会更新一个叫last的指针,这个指针始终指向当前遍历的block。这是为了如果找不到合适的block而开辟新block使用的,具体会在接下来的一节用到。
开辟新的block
如果现有block都不能满足size的要求,则需要在链表最后开辟一个新的block。这里关键是如何只使用sbrk创建一个struct:
1 | #define BLOCK_SIZE 24 /* 由于存在虚拟的data字段,sizeof不能正确计算meta长度,这里手工设置 */ |
分裂block
First fit有一个比较致命的缺点,就是可能会让很小的size占据很大的一块block,此时,为了提高payload,应该在剩余数据区足够大的情况下,将其分裂为一个新的block,示意如下:
实现代码:
1 | void split_block(t_block b, size_t s) { |
malloc的实现
有了上面的代码,我们可以利用它们整合成一个简单但初步可用的malloc。注意首先我们要定义个block链表的头first_block,初始化为NULL;另外,我们需要剩余空间至少有BLOCK_SIZE + 8才执行分裂操作。
由于我们希望malloc分配的数据区是按8字节对齐,所以在size不为8的倍数时,我们需要将size调整为大于size的最小的8的倍数:
1 | size_t align8(size_t s) { |
1 | #define BLOCK_SIZE 24 |
calloc的实现
有了malloc,实现calloc只要两步:
- malloc一段内存
- 将数据区内容置为0
由于我们的数据区是按8字节对齐的,所以为了提高效率,我们可以每8字节一组置0,而不是一个一个字节设置。我们可以通过新建一个size_t指针,将内存区域强制看做size_t类型来实现。
1 | void *calloc(size_t number, size_t size) { |
free的实现
free的实现并不像看上去那么简单,这里我们要解决两个关键问题:
- 如何验证所传入的地址是有效地址,即确实是通过malloc方式分配的数据区首地址
- 如何解决碎片问题
首先我们要保证传入free的地址是有效的,这个有效包括两方面:
- 地址应该在之前malloc所分配的区域内,即在first_block和当前break指针范围内
- 这个地址确实是之前通过我们自己的malloc分配的
第一个问题比较好解决,只要进行地址比较就可以了,关键是第二个问题。这里有两种解决方案:一是在结构体内埋一个magic number字段,free之前通过相对偏移检查特定位置的值是否为我们设置的magic number,另一种方法是在结构体内增加一个magic pointer,这个指针指向数据区的第一个字节(也就是在合法时free时传入的地址),我们在free前检查magic pointer是否指向参数所指地址。这里个人觉得可以直接根据block数据结构中的成员char data[1]来实现,不需要引入新的magic pointer???
这里我们采用第二种方案:
首先我们在结构体中增加magic pointer(同时要修改BLOCK_SIZE):1
2
3
4
5
6
7
8
9typedef struct s_block *t_block;
struct s_block {
size_t size; /* 数据区大小 */
t_block next; /* 指向下个块的指针 */
int free; /* 是否是空闲块 */
int padding; /* 填充4字节,保证meta块长度为8的倍数 */
void *ptr; /* Magic pointer,指向data */
char data[1] /* 这是一个虚拟字段,表示数据块的第一个字节,长度不应计入meta */
};
然后我们定义检查地址合法性的函数
1 | t_block get_block(void *p) { |
当多次malloc和free后,整个内存池可能会产生很多碎片block,这些block很小,经常无法使用,甚至出现许多碎片连在一起,虽然总体能满足某此malloc要求,但是由于分割成了多个小block而无法fit,这就是碎片问题。
一个简单的解决方式时当free某个block时,如果发现它相邻的block也是free的,则将block和相邻block合并。为了满足这个实现,需要将s_block改为双向链表。修改后的block结构如下:
1 | typedef struct s_block *t_block; |
合并方法如下:
1 | t_block fusion(t_block b) { |
有了上述方法,free的实现思路就比较清晰了:首先检查参数地址的合法性,如果不合法则不做任何事;否则,将此block的free标为1,并且在可以的情况下与后面的block进行合并。如果当前是最后一个block,则回退break指针释放进程内存,如果当前block是最后一个block,则回退break指针并设置first_block为NULL。实现如下:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18void free(void *p) {
t_block b;
if(valid_addr(p)) {
b = get_block(p);
b->free = 1;
if(b->prev && b->prev->free)
b = fusion(b->prev);
if(b->next)
fusion(b);
else {
if(b->prev)
b->prev->prev = NULL;
else
first_block = NULL;
brk(b);
}
}
}
realloc的实现
为了实现realloc,我们首先要实现一个内存复制方法。如同calloc一样,为了效率,我们以8字节为单位进行复制:1
2
3
4
5
6
7
8void copy_block(t_block src, t_block dst) {
size_t *sdata, *ddata;
size_t i;
sdata = src->ptr;
ddata = dst->ptr;
for(i = 0; (i * 8) < src->size && (i * 8) < dst->size; i++)
ddata[i] = sdata[i];
}
然后我们开始实现realloc。一个简单(但是低效)的方法是malloc一段内存,然后将数据复制过去。但是我们可以做的更高效,具体可以考虑以下几个方面:
- 如果当前block的数据区大于等于realloc所要求的size,则不做任何操作
- 如果当前block的数据区不能满足size,但是其后继block是free的,并且合并后可以满足,则考虑做合并
下面是realloc的实现:
1 | void *realloc(void *p, size_t size) { |
遗留问题和优化
以上是一个较为简陋,但是初步可用的malloc实现。还有很多遗留的可能优化点,例如:
- 同时兼容32位和64位系统
- 在分配较大快内存时,考虑使用mmap而非sbrk,这通常更高效
- 可以考虑维护多个链表而非单个,每个链表中的block大小均为一个范围内,例如8字节链表、16字节链表、24-32字节链表等等。此时可以根据size到对应链表中做分配,可以有效减少碎片,并提高查询block的速度
- 可以考虑链表中只存放free的block,而不存放已分配的block,可以减少查找block的次数,提高效率